Functional-Type A Posteriori Error Estimates for Mixed Finite Element Methods

نویسندگان

  • Sergey Repin
  • Anton Smolianski
  • A. Kuznetsov
چکیده

The work concerns the a posteriori error estimation for the primal and the dual mixed finite element methods applied to the diffusion problem. The problem is considered in a general setting, with inhomogeneous mixed Dirichlet/Neumann boundary conditions. The new, functional-type a posteriori error estimators are proposed that exhibit the ability both to indicate the local error distribution and to provide guaranteed upper bounds for the discretization errors in the primal and the dual (flux) variables. The latter property is a direct consequence of the absence in the estimators of any mesh-dependent constants; the only constants present in the estimates stem from the Friedrichs and the trace inequalities and, thus, are global and dependent solely on the domain geometry and the bounds of the diffusion matrix. The estimators are computationally cheap and require only the projections of piecewise constant functions onto the spaces of the lowest-order Raviart-Thomas or of the continuous piecewise linear elements. It is shown how these projections can be easily realized with a simple local averaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex

Finite element exterior calculus (FEEC) has been developed over the past decade as a framework for constructing and analyzing stable and accurate numerical methods for partial differential equations by employing differential complexes. The recent work of Arnold, Falk, and Winther includes a well-developed theory of finite element methods for Hodge–Laplace problems, including a priori error esti...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

An adaptive least-squares mixed finite element method for pseudo-parabolic integro-differential equations

In this article, an adaptive least-squares mixed finite element method is studied for pseudo-parabolic integro-differential equations. The solutions of least-squares mixed weak formulation and mixed finite element are proved. A posteriori error estimator is constructed based on the least-squares functional and the posteriori errors are obtained. Keywords—Pseudo-parabolic integro-differential eq...

متن کامل

A new positive definite semi-discrete mixed finite element solution for parabolic equations

In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations.  Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005